Majority-vote model on scale-free hypergraphs

Scaling hypothesis in opinion formation model

Tomasz Gradowski and Andrzej Krawiecki

Physics of Complex Systems Faculty of Physics Warsaw University of Technology

7. Sympozjum "Fizyka w Ekonomii i Naukach Społecznych", 14-17 May 2014, Lublin

Hypergraphs

Hypergraph

Hypergraph is a generalization of an ordinary graph defined as H=(V,E), where V is a set of vertices, and E is a set of hyperedges. Each hyperedge is a subset of vertices of any size. Properties of hypergraphs:

- structure focused on groups
- enables multiparticle interactions

Figure: Simple hypergraph. Hyperedges are represented by lines. Each hyperedge consists of 4 nodes.

- Random hypergraphs and their applications, G. Ghoshal et al. PRE 79, 066118 (2009)
- Evolving hypernetwork model, J-W Wang et al., EPJ B 77, 493 (2010)

Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

- n number of nodes in each hyperedge
- *m* number of new nodes added in each step
- *m_h* number of new hyperedges added in each step

- we start a new hypergraph with *n* vertices...
 - connected with one hyperedge
- m new vertices are added
- n m old nodes are randomly selected (according to the preferential attachment rule)... and connected with new nodes by one hyperedge
- we repeat last step m_h times

Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

- n number of nodes in each hyperedge
- *m* number of new nodes added in each step
- *m_h* number of new hyperedges added in each step

- we start a new hypergraph with *n* vertices... connected with one hyperedge
 - m new vertices are added
- n m old nodes are randomly selected (according to the preferential attachment rule)... and connected with new nodes by one hyperedge
- we repeat last step m_h times

$$P(k) \sim k^{-\alpha}$$

Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

- n number of nodes in each hyperedge
- *m* number of new nodes added in each step
- *m_h* number of new hyperedges added in each step

- we start a new hypergraph with *n* vertices... connected with one hyperedge
- m new vertices are added
- n m old nodes are randomly selected (according to the preferential attachment rule)... and connected with new nodes by one hyperedge
- we repeat last step m_h times

$$P(k) \sim k^{-\alpha}$$

Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

- n number of nodes in each hyperedge
- *m* number of new nodes added in each step
- *m_h* number of new hyperedges added in each step

- we start a new hypergraph with *n* vertices... connected with one hyperedge
- *m* new vertices are added
- n m old nodes are randomly selected (according to the preferential attachment rule)... and connected with new nodes by one hyperedge
- we repeat last step m_h times

$$P(k) \sim k^{-lpha}$$

$$\alpha = 1 + \frac{n}{n-m}$$

Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

- n number of nodes in each hyperedge
- *m* number of new nodes added in each step
- *m_h* number of new hyperedges added in each step

- we start a new hypergraph with *n* vertices... connected with one hyperedge
- m new vertices are added
- n m old nodes are randomly selected (according to the preferential attachment rule)... and connected with new nodes by one hyperedge
- we repeat last step m_h times

$$P(k) \sim k^{-lpha}$$

 $lpha = 1 + - rac{n}{-}$

Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

- n number of nodes in each hyperedge
- *m* number of new nodes added in each step
- *m_h* number of new hyperedges added in each step

- we start a new hypergraph with *n* vertices... connected with one hyperedge
- m new vertices are added
- n m old nodes are randomly selected (according to the preferential attachment rule)... and connected with new nodes by one hyperedge
- we repeat last step m_h times

$$P(k) \sim k^{-\alpha}$$

$$\alpha = 1 + \frac{n}{n - m}$$

Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

- n number of nodes in each hyperedge
- *m* number of new nodes added in each step
- *m_h* number of new hyperedges added in each step

- we start a new hypergraph with *n* vertices... connected with one hyperedge
- m new vertices are added
- n m old nodes are randomly selected (according to the preferential attachment rule)... and connected with new nodes by one hyperedge
- we repeat last step m_h times

$$P(k) \sim k^{-lpha}$$

$$\alpha = 1 + \frac{n}{n-m}$$

Majority-vote model

- each node has a spin variable $\sigma_i = \pm 1$
- future state of each spin depends on the majority state of its neighbours
- control parameter q (0 ≤ q ≤ 1) is introduced, which plays a role of a temperature (noise)
- nodes are updated according to the hyperedge-update or node-update dynamics
- *S* = 0 gives the *if you don't know* what to do, do anything rule.

M. J. de Oliveira, Journal of Statistical Physics 66 (1992)

Single spin flip probability

$$w_i(\sigma) = \frac{1}{2} \left(1 - (1 - 2q)\sigma_i S\right)$$

where

$$S = \operatorname{sgn}\left(\sum_e \sigma_i\right)$$

Sum in S goes over all nodes in selected hyperedge.

sgn(x) is the signum function:

$$sgn(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Hyperedge-update and node-update dynamics

- dynamics is asynchronous (hyperedges are updated in random order)
- in each step one hyperedge is randomly selected
- all nodes in selected hyperedge are updated simultaneously according to the probabilistic rule dependent on the majority opinion of selected hyperedge

- dynamics is asynchronic (vertices are updated in random order)
- in each step one node is randomly selected
- one hyperedge is randomly selected from a set of hyperedges connected with selected node
- state of selected node is updated according to the probabilistic rule dependent on the majority opinion of selected hyperedge

Hyperedge-update and node-update dynamics

- dynamics is asynchronous (hyperedges are updated in random order)
- in each step one hyperedge is randomly selected
- all nodes in selected hyperedge are updated simultaneously according to the probabilistic rule dependent on the majority opinion of selected hyperedge

- dynamics is asynchronic (vertices are updated in random order)
- in each step one node is randomly selected
- one hyperedge is randomly selected from a set of hyperedges connected with selected node
- state of selected node is updated according to the probabilistic rule dependent on the majority opinion of selected hyperedge

Hyperedge-update and node-update dynamics

- dynamics is asynchronous (hyperedges are updated in random order)
- in each step one hyperedge is randomly selected
- all nodes in selected hyperedge are updated simultaneously according to the probabilistic rule dependent on the majority opinion of selected hyperedge

- dynamics is asynchronic (vertices are updated in random order)
- in each step one node is randomly selected
- one hyperedge is randomly selected from a set of hyperedges connected with selected node
- state of selected node is updated according to the probabilistic rule dependent on the majority opinion of selected hyperedge

Hyperedge-update and node-update dynamics

- dynamics is asynchronous (hyperedges are updated in random order)
- in each step one hyperedge is randomly selected
- all nodes in selected hyperedge are updated simultaneously according to the probabilistic rule dependent on the majority opinion of selected hyperedge

- dynamics is asynchronic (vertices are updated in random order)
- in each step one node is randomly selected
- one hyperedge is randomly selected from a set of hyperedges connected with selected node
- state of selected node is updated according to the probabilistic rule dependent on the majority opinion of selected hyperedge

Hyperedge-update and node-update dynamics

- dynamics is asynchronous (hyperedges are updated in random order)
- in each step one hyperedge is randomly selected
- all nodes in selected hyperedge are updated simultaneously according to the probabilistic rule dependent on the majority opinion of selected hyperedge

- dynamics is asynchronic (vertices are updated in random order)
- in each step one node is randomly selected
- one hyperedge is randomly selected from a set of hyperedges connected with selected node
- state of selected node is updated according to the probabilistic rule dependent on the majority opinion of selected hyperedge

Hyperedge-update and node-update dynamics

- dynamics is asynchronous (hyperedges are updated in random order)
- in each step one hyperedge is randomly selected
- all nodes in selected hyperedge are updated simultaneously according to the probabilistic rule dependent on the majority opinion of selected hyperedge

- dynamics is asynchronic (vertices are updated in random order)
- in each step one node is randomly selected
- one hyperedge is randomly selected from a set of hyperedges connected with selected node
- state of selected node is updated according to the probabilistic rule dependent on the majority opinion of selected hyperedge

Hyperedge-update and node-update dynamics

- dynamics is asynchronous (hyperedges are updated in random order)
- in each step one hyperedge is randomly selected
- all nodes in selected hyperedge are updated simultaneously according to the probabilistic rule dependent on the majority opinion of selected hyperedge

- dynamics is asynchronic (vertices are updated in random order)
- in each step one node is randomly selected
- one hyperedge is randomly selected from a set of hyperedges connected with selected node
- state of selected node is updated according to the probabilistic rule dependent on the majority opinion of selected hyperedge

Simulation parameters

- system size: from $N = 10^3$ up to 10^5
- hypergraph topologies:
 - $n = 3, m = 1, m_h = 1$; $P(k) \sim k^{-2.5}, |\{e\}| \approx N$
 - $n = 3, m = 2, m_h = 3; P(k) \sim k^{-4}, |\{e\}| \approx \frac{3}{2}N$
 - $n = 4, m = 2, m_h = 1; P(k) \sim k^{-3}, |\{e\}| \approx \frac{1}{2}N$
- averaged over 10 independent realizations of the hypergraph
- \bullet transient time: 10^4 steps (hyperedge-update dynamics), 10^5 steps (node-update dynamics)
- $\bullet\,$ measure time: 10^4 steps (hyperedge-update dynamics), 10^5 steps (node-update dynamics)
- at the begining of the simulation all spins are set to 1 (ferromagnetic initial conditions)

Critical phenomena

Magnetization
$$M(q) = [\langle |m| \rangle]_{av}$$
Susceptibility $\chi(q) = N \left[(\langle m^2 \rangle - \langle m \rangle^2) \right]_{av}$ Reduced fourth-order cumulant (Binder

cumulant)

$$U_4(q) = 1 - \left[rac{\langle m^4
angle}{3\langle m^2
angle^2}
ight]_{_{\partial V}}$$

To study the critical behavior we define the variable *m*:

$$m = \frac{1}{N} \sum_{i=1}^{N} \sigma_i$$

Next, we examine the magnetization M, susceptibility χ and the reduced fourth-order cumulant U_4 .

 $\langle \ldots \rangle$ stands for the thermodynamic average

1

 $[\ldots]_{av}$ means average over independent realizations of the system (simulations)

Example results: n = 3, m = 2, $m_h = 3$, hyperedge update dynamics.

The critical noise parameter q_c is estimated as the point where the U_4 curves for different system sizes N intercept each other.

From thermodynamic limit do finite-size scaling

In the thermodynamic limit

$$M \sim (T - T_c)^{\beta}$$

$$\chi \sim (T - T_c)^{-2}$$

 $\xi \sim (T - T_c)^{-\nu}$

In the finite system of size $N = L^D$ the correlation length $\xi \to L$ in $T = T_c$. Thus:

Finite size scaling

$$M = L^{-\beta/\nu} f_m \left(L^{1/\nu} (T - T_c) \right)$$
$$\chi = L^{\gamma/\nu} f_\chi \left(L^{1/\nu} (T - T_c) \right)$$

Next, we find the critical exponents from the following relations:

$$M(T_c) \sim L^{-\beta/\nu}$$

 $\chi(T_c) \sim L^{\gamma/\nu}$

Critical exponents obey the Rushbrooke's Identity:

$$\gamma/\nu + 2\beta/\nu = 1$$

$$M(q_c) \sim N^{-eta/
u}$$

$$\chi(q_c) \sim N^{\gamma/\nu}$$

From thermodynamic limit do finite-size scaling

In the thermodynamic limit

$$M \sim (T - T_c)^{\beta}$$

$$\chi \sim (T - T_c)^{-2}$$

 $\xi \sim (T - T_c)^{-\nu}$

In the finite system of size $N = L^D$ the correlation length $\xi \to L$ in $T = T_c$. Thus:

Finite size scaling

$$M = L^{-\beta/\nu} f_m \left(L^{1/\nu} (T - T_c) \right)$$
$$\chi = L^{\gamma/\nu} f_\chi \left(L^{1/\nu} (T - T_c) \right)$$

Next, we find the critical exponents from the following relations:

$$M(T_c) \sim L^{-\beta/\nu}$$

 $\chi(T_c) \sim L^{\gamma/\nu}$

Critical exponents obey the Rushbrooke's Identity:

$$\gamma/\nu + 2\beta/\nu = 1$$

$$M(q_c) \sim N^{-\beta/\nu}$$

$$\chi(q_c) \sim N^{\gamma/\nu}$$

From thermodynamic limit do finite-size scaling

In the thermodynamic limit

$$M \sim (T - T_c)^{\beta}$$

$$\chi \sim (T - T_c)^{-2}$$

 $\xi \sim (T - T_c)^{-\nu}$

In the finite system of size $N = L^D$ the correlation length $\xi \to L$ in $T = T_c$. Thus:

Finite size scaling

$$M = L^{-\beta/\nu} f_m \left(L^{1/\nu} (T - T_c) \right)$$
$$\chi = L^{\gamma/\nu} f_\chi \left(L^{1/\nu} (T - T_c) \right)$$

Next, we find the critical exponents from the following relations:

$$M(T_c) \sim L^{-\beta/\nu}$$

 $\chi(T_c) \sim L^{\gamma/\nu}$

Critical exponents obey the Rushbrooke's Identity:

$$\gamma/\nu + 2\beta/\nu = 1$$

$$M(q_c) \sim N^{-\beta/
u}$$

$$\chi(q_c) \sim N^{\gamma/\nu}$$

From thermodynamic limit do finite-size scaling

In the thermodynamic limit

$$M \sim (T - T_c)^{\beta}$$

$$\chi \sim (T - T_c)^{-\gamma}$$

 $\xi \sim (T - T_c)^{-\nu}$

In the finite system of size $N = L^D$ the correlation length $\xi \to L$ in $T = T_c$. Thus:

Finite size scaling

$$M = L^{-\beta/\nu} f_m \left(L^{1/\nu} (T - T_c) \right)$$
$$\chi = L^{\gamma/\nu} f_\chi \left(L^{1/\nu} (T - T_c) \right)$$

Next, we find the critical exponents from the following relations:

$$M(T_c) \sim L^{-\beta/\nu}$$

 $\chi(T_c) \sim L^{\gamma/\nu}$

Critical exponents obey the Rushbrooke's Identity:

$$\gamma/\nu + 2\beta/\nu = 1$$

$$M(q_c) \sim N^{-eta/
u}$$

$$\chi(q_c) \sim N^{\gamma/\nu}$$

Magnetization and susceptibility scaling

log(M(q_c))

Susceptibility

log N					log N			
	hyperedge-update				node-update			
hypergraph	q_c	β/ν	γ/ u	$\gamma/ u + 2eta/ u$	q_c	β/ν	γ/ u	$\gamma/ u + 2eta/ u$
n3 m1 m _h 1	0.158	0.26	0.48	1.00	0.115	0.10	0.76	0.96
n3 m2 m _h 3	0.100	0.17	0.56	0.90	0.075	0.29	0.46	1.04
$n4 m2 m_h1$	0.144	0.17	0.57	0.91	0.102	0.13	0.66	0.92

- hypergraph is a proper framework for opinion formation model (group is the basic unit)
- hypergraphs enable us to investigate broader class of models
- we observe second order phase transition in majority-vote model on hypergraphs
- the critical value of control parameter is system size independent
- scaling hypothesis seems to be valid in this particular system

- hypergraph is a proper framework for opinion formation model (group is the basic unit)
- hypergraphs enable us to investigate broader class of models
- we observe second order phase transition in majority-vote model on hypergraphs
- the critical value of control parameter is system size independent
- scaling hypothesis seems to be valid in this particular system

- hypergraph is a proper framework for opinion formation model (group is the basic unit)
- hypergraphs enable us to investigate broader class of models
- we observe second order phase transition in majority-vote model on hypergraphs
- the critical value of control parameter is system size independent
- scaling hypothesis seems to be valid in this particular system

Raczkowski na koniec

GAZETA.PL RACZKOWSKI