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Hypergraphs

Hypergraph

Hypergraph is a generalization of an
ordinary graph defined as H=(V,E), where
V is a set of vertices, and E is a set of
hyperedges. Each hyperedge is a subset of
vertices of any size.
Properties of hypergraphs:

structure focused on groups

enables multiparticle interactions

Figure: Simple hypergraph. Hyperedges are
represented by lines. Each hyperedge consists
of 4 nodes.

Random hypergraphs and their applications, G. Ghoshal et al. PRE 79, 066118 (2009)

Evolving hypernetwork model, J-W Wang et al., EPJ B 77, 493 (2010)
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Scale-free hypergraphs preferential attachment algorithm

Algorithm parameters

n - number of nodes in each
hyperedge

m - number of new nodes added
in each step

mh - number of new hyperedges
added in each step

n = 3, m = 2, mh = 2 example

we start a new hypergraph with n vertices...
connected with one hyperedge

m new vertices are added

n −m old nodes are randomly selected
(according to the preferential attachment
rule)... and connected with new nodes by one
hyperedge

we repeat last step mh times

Hyperedge distribution

P(k) ∼ k−α

α = 1+
n

n −m
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Majority-vote model

each node has a spin variable σi = ±1
future state of each spin depends on
the majority state of its neighbours

control parameter q (0 ≤ q ≤ 1) is
introduced, which plays a role of a
temperature (noise)

nodes are updated according to the
hyperedge-update or node-update
dynamics

S = 0 gives the if you don’t know
what to do, do anything rule.

M. J. de Oliveira, Journal of Statistical Physics
66 (1992)

Single spin flip probability

wi (σ) =
1
2
(1− (1− 2q)σiS)

where

S = sgn

(∑
e

σi

)
Sum in S goes over all nodes in selected
hyperedge.
sgn(x) is the signum function:

sgn(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.
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Hyperedge-update and node-update dynamics

Hyperedge-update dynamics

dynamics is asynchronous (hyperedges are
updated in random order)

in each step one hyperedge is randomly
selected

all nodes in selected hyperedge are
updated simultaneously according to the
probabilistic rule dependent on the
majority opinion of selected hyperedge

Node-update dynamics

dynamics is asynchronic (vertices are
updated in random order)

in each step one node is randomly selected

one hyperedge is randomly selected from
a set of hyperedges connected with
selected node

state of selected node is updated
according to the probabilistic rule
dependent on the majority opinion of
selected hyperedge
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Simulation parameters

system size: from N = 103 up to 105

hypergraph topologies:
n = 3, m = 1, mh = 1 ; P(k) ∼ k−2.5, |{e}| ≈ N

n = 3, m = 2, mh = 3 ; P(k) ∼ k−4, |{e}| ≈ 3
2N

n = 4, m = 2, mh = 1 ; P(k) ∼ k−3, |{e}| ≈ 1
2N

averaged over 10 independent realizations of the hypergraph

transient time: 104 steps (hyperedge-update dynamics), 105 steps (node-update
dynamics)

measure time: 104 steps (hyperedge-update dynamics), 105 steps (node-update
dynamics)

at the begining of the simulation all spins are set to 1 (ferromagnetic initial
conditions)
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Critical phenomena

Magnetization

M(q) = [〈|m|〉]av

Susceptibility

χ(q) = N
[(
〈m2〉 − 〈m〉2

)]
av

Reduced fourth-order cumulant (Binder
cumulant)

U4(q) = 1−
[
〈m4〉
3〈m2〉2

]
av

To study the critical behavior we define the
variable m:

m =
1
N

N∑
i=1

σi

Next, we examine the magnetization M,
susceptibility χ and the reduced
fourth-order cumulant U4.

〈. . .〉 stands for the thermodynamic
average
[. . .]av means average over independent
realizations of the system (simulations)
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From thermodynamic limit do finite-size scaling

In the thermodynamic limit

M ∼ (T − Tc )
β

χ ∼ (T − Tc )
−γ

ξ ∼ (T − Tc )
−ν

In the finite system of size N = LD the
correlation length ξ → L in T = Tc . Thus:

Finite size scaling

M = L−β/ν fm
(
L1/ν(T − Tc )

)
χ = Lγ/ν fχ

(
L1/ν(T − Tc )

)

Next, we find the critical exponents from
the following relations:

M(Tc ) ∼ L−β/ν

χ(Tc ) ∼ Lγ/ν

Critical exponents obey the Rushbrooke’s
Identity:

γ/ν + 2β/ν = 1

In our system we look for relations:

M(qc ) ∼ N−β/ν

χ(qc ) ∼ Nγ/ν
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Magnetization and susceptibility scaling

Magnetization
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hyperedge-update node-update
hypergraph qc β/ν γ/ν γ/ν + 2β/ν qc β/ν γ/ν γ/ν + 2β/ν
n3 m1 mh1 0.158 0.26 0.48 1.00 0.115 0.10 0.76 0.96
n3 m2 mh3 0.100 0.17 0.56 0.90 0.075 0.29 0.46 1.04
n4 m2 mh1 0.144 0.17 0.57 0.91 0.102 0.13 0.66 0.92
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Summary

hypergraph is a proper framework for opinion formation model (group is the basic
unit)

hypergraphs enable us to investigate broader class of models

we observe second order phase transition in majority-vote model on hypergraphs

the critical value of control parameter is system size independent

scaling hypothesis seems to be valid in this particular system
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Raczkowski na koniec
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